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Abstract. In this paper a prediction method for nonlinear time series based on a Set Membership (SM)

approach is proposed. The method does not require the choice of the functional form of the model used for

prediction, but assumes a bound on the rate of variation of the regression function defining the model. At the

contrary, most of the existing prediction methods need the choice of a functional form of the regression function

or of state equations (piecewise linear, quadratic, etc.) and this choice is usually the result of heuristic searches.

These searches may be quite time consuming, and lead only to approximate model structures, whose errors may be

responsible of bad propagation of prediction errors, especially for the multi-step ahead prediction. Moreover, the

method proposed in this paper assumes only that the noise is bounded, in contrast with statistical approaches,

which rely on noise assumptions such as stationarity, ergodicity, uncorrelation, type of distribution, etc. The

validity of these assumptions may be difficult to be reliably tested in many applications and is certainly lost in

presence of approximate modeling. In the present SM approach, using a result developed in [1], the values of the

bounds on the gradient of the regression function and on the noise can be suitably assessed to verify the validity

tests. Two almost optimal prediction algorithms are then derived, the second one having improved optimal

properties over the first one, at the expense of an increased computational complexity. The method is tested

and compared with other literature methods on the well known Wolf Sunspot Numbers series, widely used in the

time series literature as a benchmark test, and on the prediction of vertical dynamics of vehicles with controlled

suspensions. A simulation example is also presented to investigate how much conservative the SM approach may

be in the most adverse situation where data are generated by a linear AR model driven by i.i.d. gaussian white

noise and the SM prediction is compared with the optimal statistical predictor, which makes use of the exact

assumptions.

1 Introduction

Time series prediction is a fundamental problem in most fields of science and technology ranging from

signal processing [2, 3], to coding [4], finance and economy [5, 6], hydrometeorology [7, 8, 9], weather

and climate [10], chemistry [11], production and distribution of goods and services [12]. Prediction plays

also an important role in control [13]. A huge literature is available, presenting various approaches and

methodology for its solution, essentially based on the identification of some model of the mechanism

generating the data and on the use of the identified model for prediction (see e.g. [11, 14, 15, 16]).

Consider a nonlinear dynamic system of the form:

yt+1 = fo
¡
wt
¢

(1)

where wt = [yt ... yt−ny+1 ut1 ... ut−n1+11 ... utm ... ut−nm+1m ], yt, ut1, ..., u
t
m ∈ <, fo : <n → <, n =

ny +
Pm

i=1 ni.
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A set of noise corrupted measurements eyt and ewt of yt and wt, t = 1, 2, ..., T is available and the aim

is to derive a prediction byT+k of yT+k, possibly giving “small” prediction error |byT+k − yT+k|.
Since data are finite and noise corrupted, providing only limited information on fo, whatever predictionbyT+k is used, no finite bound on the prediction error can be derived if no information is available on fo

and on noise. Indeed, it is well known that determining a model from a finite set of data without any

prior knowledge about the system is an ill-posed problem, in the sense that a unique model may not exist,

or it may not depend continuously on data [17]. The information on fo is typically given by considering

that it belongs to a finitely parametrized set of functions K .
= {f (p) , p ∈ <q}. Measured data are then

used to derive an estimate bp of free parameters p and f (bp) is used to make predictions. In some cases,
the knowledge of the laws governing the system (mechanical, economical, biological, etc.) generating the

data, may allow to have reliable information on its structure. In many other situations, due to the fact

that the laws are too complex or not sufficiently known, this is not possible or not convenient and the

usual approach is to consider black-box parametrizations. Basic to this approach is the proper choice of

the set of functions f (p) , typically realized by some search on different functional forms, starting from

the simplest ones, such as linear models, possibly after nonlinear transformations of data (logarithmic,

square root, etc.) and moving to more complex ones, such as piecewise linear, bilinear, neural networks,

etc. [18, 19, 20]. This search may be quite time consuming, and in any case leads to approximate model

structures only. Evaluating the effects of such approximation on the propagation of the prediction error

appear to be a formidable problem, since most of the properties of prediction methods are derived under

the assumption that fo belongs to the chosen family of functions f (p) , [11, 14].

In this paper we propose an alternative approach based on a Set Membership (SM) framework which

proved useful in linear systems identification with approximate models [21, 22, 23, 24, 25]. The approach

has connection with Information Based Complexity (IBC) methods for evaluating functionals of multi-

variable functions with bounded derivatives, from the knowledge of a finite number of their values (see

e.g. [26, 27, 28] and the references therein). In the IBC literature, noise free measurements are typically

assumed, and weaker optimality concepts are considered than the one of the present paper. The pro-

posed method does not assume to know the functional form of fo, but uses only some information on its

regularity, given by bounds on the gradients of fo. In this way, the problem of considering approximate

functional forms of fo is circumvented. Moreover it is assumed that measurements are corrupted by

bounded noise, in contrast with statistical approaches, which rely on assumptions such as stationarity,

ergodicity, uncorrelation, type of distribution, etc. The validity of these assumptions may be difficult to

be reliably tested in many applications and is certainly lost in presence of approximate modeling, when

fo 6∈ K
.
= {f (p) ,p ∈ <q}. The same assumptions of the present paper has been used in [1] for the

identification problem of finding an estimate bf of fo, giving "small" Lp identification error ||fo − bf ||p.
As a matter of fact, the two problems are related, in the sense that they are two specific instances of the

general problem of making an inference on the unknown system, described by the operator I (fo,WT ),

where WT
.
= [w1,w2,...,wT ]. Specifically, I (fo,WT ) = fo if the desired inference is the identification of

the unknown function fo, as considered in [1], and I (fo,WT ) = fo(wT ) if the inference is one-step pre-

diction, as considered in the present paper. However, the two problems (identification and prediction)

are different problems with different solutions. In particular, the optimal solution of the identification
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problem, derived in [1] does not provide optimal prediction. Indeed, in the prediction problem considered

in the present paper, finding an optimal algorithm appears to be difficult, as it often happens in SM-IBC

contexts [23, 26]. However, two almost optimal Nonlinear Set Membership (NSM) prediction algorithms

are derived, the second one having improved optimal properties over the first one, at the expense of

increased computational complexity.

The paper is organized as follows. In section 2, the prediction problem is formulated in the SM

framework, defining system and noise assumptions, prediction error, validation and optimality concepts.

In section 3, two almost optimal algorithms and upper and lower bounds on their worst case prediction

error are derived. Conditions are also given, under which such algorithms give actually optimal prediction

and their error bound are actually the minimal worst case prediction error achievable by any algorithm.

In section 4, the approach is tested and compared with other literature methods on the well known

Wolf Sunspot Numbers series, widely used in the time series literature as a benchmark test, and on the

prediction of vertical dynamics of vehicles with controlled suspensions. A simulation example is also

presented to investigate how much conservative the SM approach may be in the most adverse situation

where data are generated by a linear AR model driven by i.i.d. gaussian white noise and the NSM

prediction algorithms are compared with the optimal statistical predictor, which makes use of the exact

assumptions.

2 Nonlinear Set Membership prediction and optimality proper-

ties

In this section, the prediction problem is formulated in a Set Membership framework, see e.g. [21, 22, 23].

Consider that a set of noise corrupted data eY T = [ey1, ey2, ..., eyT ] and fWT = [ ew1, ew2, ..., ewT ] generated by

(1) is available. Then: eyt+1 = fo( ewt) + dt, t = 1, 2, .., T − 1

where the term dt accounts for the fact yt+1 and wt are not exactly known. The aim is to obtain an

estimate byT+k of yT+k, possibly giving small k−step ahead prediction error |byT+k − yT+k|.
It must be noted that no finite bound on the prediction error can be guaranteed, unless some as-

sumptions are made on the function fo and the noise d. The typical approach in the literature is to

assume a given functional form for fo (linear, bilinear, etc.) and statistical models on the noise sequence.

In the present SM approach, different and somewhat weaker assumptions are taken, not requiring the

selection of a functional form for fo, but related to its rate of variation. Moreover, the noise sequence

DT = [d1, d2, ..., dT ] is only supposed to be bounded.

Prior assumptions on fo:

fo ∈ K
.
=
©
f ∈ C1(W ) : kf 0(w)k ≤ γ, ∀w ∈W

ª
where f 0(w) denotes the gradient of f(w), kxk .

=
pPn

i=1 x
2
i is the Euclidean norm and W is a subset of

<n.
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Prior assumptions on noise:

DT ∈ D .
=
©
[d1, d2, ..., dT ] : |dt| ≤ εt + γδt, t = 1, 2, ..., T

ª
where εt and δt are the bounds on noises affecting y and w according to

¯̄
yt+1 − eyt+1¯̄ ≤ εt, kwt − ewtk ≤ δt,

t = 1, 2, ..., T . The rational for this assumption is that dt = eyt+1 − yt+1 + fo(w
t) − fo( ewt) and then

|dt| ≤ ¯̄eyt+1 − yt+1
¯̄
+ γ kwt − ewtk.

A key role in this Set Membership framework is played by the Feasible Systems Set, often called

“unfalsified systems set”, i.e. the set of all systems consistent with prior information and measured data.

Definition 1 The Feasible Systems Set FSST is:

FSST
.
= {f ∈ K :

¯̄eyt+1 − f
¡ ewt

¢¯̄ ≤ εt + γδt, t = 1, 2, ..., T − 1}

The Feasible Systems Set FSST summarizes all the information (measured data and prior information

on fo and noise d) that is available up to time T on the mechanism generating the data. As required in

any identification theory, the problem of checking the validity of prior assumptions arises. Indeed, the

only thing that can be actually done is to check if prior assumptions are invalidated by data, evaluating

if no unfalsified system exists, i.e. if FSST is empty. However, it is usual to introduce the concept of

prior assumption validation as follows:

Definition 2 Prior assumptions are considered validated if FSST 6= ∅.

Necessary and sufficient conditions for checking the assumptions validity, are given below in theorem

1, which is reported from [1].

Let us introduce the following quantities:

f (w)
.
= min

t=1,...,T−1

³
h
t
+ γ kw − ewtk

´
f (w)

.
= max

t=1,...,T−1
¡
ht − γ kw − ewtk¢ (2)

where h
t .
= eyt+1 + εt + γδt and ht

.
= eyt+1 − εt − γδt.

Theorem 1 [1]

i) A necessary condition for prior assumptions to be validated is:

f
¡ ewt

¢ ≥ ht t = 1, 2, ..., T − 1

ii) A sufficient condition for prior assumptions to be validated is:

f
¡ ewt

¢
> ht t = 1, 2, ..., T − 1
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Theorem 1 can be used for assessing the values of εt, δt and γ, in order to have a non-empty FSST .

In order to not require too much detailed information on bounds εt, δt, absolute or relative error models

for these bounds can be adopted, i.e. εt = ε ∀t, δt = δ ∀t or εt = ε
¯̄eyt+1 ¯̄ ∀t, δt = δ k ewtk ∀t.

In the space (ε, δ, γ), the function:

γ∗ (ε, δ) .
= inf

FSST 6=∅
γ (3)

represents a surface that separate falsified values of ε, δ and γ from validated ones. Clearly, ε, δ and γ

must be chosen in the validated parameters region (see section 7 of [1] and the end of the next section

for some more details on the selection of these constants).

Let us now define the error of given prediction algorithm. For the sake of simplicity of exposition, let

us focus on one-step ahead prediction. A one-step ahead prediction algorithm φ is a function mapping

all available information until time T about data, function fo and noise d, summarized by FSST , into

the predicted value of yT+1: byT+1 = φ
¡
FSST

¢
Its prediction error PE = |byT+1 − yT+1| = |φ ¡FSST ¢ − fo

¡
wT
¢ | is not exactly known, since it is

only known that fo ∈ FSST and wT ∈ Bδ

¡ ewT
¢ .
= {w : ||w− ewT || ≤ δT }. Thus, the worst case prediction

error defined as:

WPE( byT+1) .
= sup

f∈FSST
sup

wT∈Bδ(wT )
| byT+1 − f

¡
wT
¢ |

can be used as a measure of prediction accuracy.

Looking for prediction algorithms that minimize the worst case prediction error, leads to the following

optimality concepts.

Definition 3 A prediction byT+1o is said optimal if:

WPE( byT+1o ) = inf
φ
WPE

£
φ
¡
FSST

¢¤
A prediction algorithm φo is called optimal if:

WPE
£
φo
¡
FSST

¢¤
= inf

φ
WPE

£
φ
¡
FSST

¢¤
, ∀FSST

Thus, an optimal prediction algorithm gives optimal predictions for any available information up to

time T . As it often happens in SM-IBC theory (see e.g.[22, 23, 26]), finding optimal algorithms is in

general hard, motivating the interest of deriving simpler algorithms, at the expense of some degradation

in the prediction error with respect to an optimal algorithm. In particular, algorithms guaranteeing a

degradation in the prediction error of at most 2 are widely considered in the literature, and called "almost

optimal", according to the following definition.

Definition 4 : A prediction algorithm φao is called almost optimal if:

WPE
£
φao

¡
FSST

¢¤ ≤ 2 inf
φ
WPE

£
φ
¡
FSST

¢¤
, ∀FSST
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3 Almost optimal prediction algorithms

In the identification problem investigated in [1], it has been shown that the function fc (w)
.
= 1

2

£
f (w) + f (w)

¤
is an optimal estimate of fo, in the sense that it minimizes the worst case Lp norm ||fo − fc||p, ∀p ≥ 1.
In analogy to the statical setting, where optimal identification and prediction are strictly related, it

can be expected that prediction fc( ewT ) is optimal. Indeed, it will be shown that such a prediction is in

general only almost optimal and that optimality is reached under some conditions.

In order to formulate the results, we need to recall the notion of Hyperbolic Voronoi Diagrams (HVD),

a generalization of the standard Voronoi Diagrams, introduced in [1]. Consider the set of points:

fWT .
= [ ew1, ew2, ..., ewT ]

and a T × T antisymmetric matrix η. Then define:

• The (n− 1)-dimensional hyperbola Htτ :

Htτ .
= {w ∈ <n : °°w − ewt

°°− kw − ewτk = ηtτ , t 6= τ}

• The n-dimensional region Stτ containing ewt:

Stτ
.
= {w ∈ <n : °°w − ewt

°°− kw − ewτk < ητt, t 6= τ}

• The hyperbolic cell Ct:

Ct .
=
\
τ 6=t

Stτ

Note that some cell Ct may be empty. The intersections between the surfaces Htτ generate other

cells of dimension d, with 0 ≤ d ≤ n− 1 called d-faces. The cells Ct are called n-faces while the 0-faces

are also called vertices.

Definition 5 The Hyperbolic Voronoi Diagram V
³fWT , η

´
is defined as the set of all d-faces, 0 ≤ d ≤ n.

If ηtτ = 0,∀t, τ , all hyperbola Htτ degenerate into hyperplanes and the definitions become the ones

of standard Voronoi diagrams [29].

Now, for given f and f defined in (2), consider the HVD V and V defined as:

V
.
= V

³fWT , η
´

V
.
= V

³fWT , η
´

where ητt =
³
h
τ − h

t
´
/γ, ητt =

¡
ht − hτ

¢
/γ. Let C

t
, t = 1, 2, ..., T − 1 be the cells of V and Ct,

t = 1, 2, ..., T − 1 be the cells of V .
From Theorem 4 of [1] it follows that, for w belonging to a non-empty cell C

t
, the function f (w) is

given by the cone in <n × < defined by the equation y = h
t
+ γ kw − ewtk, with vertex of coordinates³ ewt, h

t
´
and axis along the y-dimension. Since the non-empty cells of V give a complete partition of the
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regressor space <n, f is a piece-wise conic function over a suitable partition of <n that can be derived
from the HVD V . Indeed, the intersection of two cones y = h

t
+ γ kw − ewtk and y = h

τ
+ γ kw − ewτk,

projected on <n gives the hyperbola Htτ
= {w ∈ <n : kw − ewtk − kw − ewτk = ηtτ , t 6= τ} that define

the HVD V . Similar considerations hold for the relation between f and V .

Figure 1: Example of optimal upper bound f(w).

In Figures 1 and 2 the function f and the cell partition of V are reported for an example, with

w = (w1, w2) ∈ <2. Note that because of the piece-wise conic nature of f , the level contours of f in each
cell are circular.

We are now in the position of formulating the main results of the paper, related to the derivation of two

almost optimal algorithms and upper and lower bounds on their worst case prediction error. Conditions

are also given, under which such algorithms give actually optimal predictions and their error bound are

actually the minimal worst case prediction errors achievable by any algorithm.

Since from Theorem 3 of [1], it results that the non-empty cells of a HVD give a complete partition

of <n, it follows that ewT belongs to one specific cell of the HVD V and to one specific cell of the HVD

V , i.e. ∃t, t such that ewT ∈
h
C
t
i
and ewT ∈ £Ct

¤
, where C

t
and Ct are hyperbolic cells of HVD V and

V , respectively. Let us define the following quantities:

wT .
= ewT + δT

ewT − ewt

|| ewT − ewt||
wT .

= ewT + δT
ewT − ewt

|| ewT − ewt|| (4)

fu
¡ ewT

¢ .
= f

¡ ewT
¢
+ γδT f

l

¡ ewT
¢ .
= f

¡ ewT
¢− γδT

which are needed in the proof of theorem 2 and in the formulation of theorem 3.

Theorem 2

i) The prediction algorithm:

φc1
¡
FSST

¢
=
1

2

£
f
¡ ewT

¢
+ f

¡ ewT
¢¤
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Figure 2: Level curves of f(w) and corresponding HVD V .

is almost optimal, with prediction error bounded as:

WPE
£
φc1
¡
FSST

¢¤ ≤ 1
2

£
f
¡ ewT

¢− f
¡ ewT

¢¤
+ γδT

ii) If Bδ

¡ ewT
¢ ⊆ C

t ∩ Ct, then the prediction yT+1c = φc1
¡
FSST

¢
is optimal with minimal worst case

prediction error given by:

WPE
£
φc1
¡
FSST

¢¤
=
1

2

£
f
¡ ewT

¢− f
¡ ewT

¢¤
+ γδT

Proof.

Let us define the following functions:

f∗
¡ ewT

¢ .
= infw∈Bδ(wT ) inff∈FSST f (w)

f
∗ ¡ ewT

¢ .
= supw∈Bδ(wT ) supf∈FSST f (w)

(5)

Clearly, f∗
¡ ewT

¢
and f

∗ ¡ ewT
¢
are the tightest lower and upper bound of yT+1 = fo

¡
wT
¢
:

f∗
¡ ewT

¢ ≤ fo
¡
wT
¢ ≤ f

∗ ¡ ewT
¢

As well known from Set Membership theory (see e.g. [21, 22, 23]), the prediction:

yT+1o =
1

2

h
f∗
¡ ewT

¢
+ f
∗ ¡ ewT

¢i .
= φo

¡
FSST

¢
(6)

is optimal with worst case prediction error given by:

WPE
£
φo
¡
FSST

¢¤
=
1

2

h
f
∗ ¡ ewT

¢− f∗
¡ ewT

¢i
8



In order to show that φc1
¡
FSST

¢
is almost optimal, first we note that from Theorem 2 in [1] we have

that the functions f (w) and f (w) defined in (2) are the tightest lower and upper bound of fo(w), i.e.:

f (w) = supf∈FSST f (w)

f (w) = inff∈FSST f (w)

Thus, from (5) it follows that:

f∗
¡ ewT

¢ ≤ f
¡ ewT

¢ ≤ φc1
¡
FSST

¢ ≤ f
¡ ewT

¢ ≤ f
∗ ¡ ewT

¢
From these inequalities and (6) it results:

WPE
£
φc1
¡
FSST

¢¤
=

= max
h¯̄̄
φc1
¡
FSST

¢− f
∗ ¡ ewT

¢¯̄̄
,
¯̄
φc1
¡
FSST

¢− f∗
¡ ewT

¢¯̄i ≤
≤ f

∗ ¡ ewT
¢− f∗

¡ ewT
¢ ≡ 2WPE

£
φo
¡
FSST

¢¤
, ∀FSST

i.e. the algorithm φc1
¡
FSST

¢
is almost optimal.

In order to prove the remaining part of claim i), we now show that:

f
l

¡ ewT
¢ ≤ f∗

¡ ewT
¢

fu
¡ ewT

¢ ≥ f
∗ ¡ ewT

¢ (7)

First, note that wT and wT , defined in (4), are the solutions of the following optimization problems:

wT = arg supw∈Bδ(wt)

°°°w − ewt
°°°

wT = arg supw∈Bδ(wt)
°°w − ewt

°° (8)

Suppose that wT ∈ C
t
, then:

f
∗ ¡ ewT

¢ ≡ sup
w∈Bδ(wT )

f (w) = f
¡
wT
¢
=

= f
¡ ewT

¢
+ γδT ≡ fu

¡ ewT
¢

At the contrary, if wT /∈ C
t
, we have:

f
∗ ¡ ewT

¢ ≡ sup
w∈Bδ(wT )

f (w) ≤

≤ sup
w∈Bδ(wT )

³
h
t
+ γ

°°°w − ewt
°°°´ =

= h
t
+ γ

°°°wT − ewt
°°° =

= h
t
+ γ

°°° ewT − ewt
°°°+ γδT ≡ fu

¡ ewT
¢

Analogously it can be proven that f
l

¡ ewT
¢ ≤ f∗

¡ ewT
¢
.

From (7), it follows that the worst-case prediction error of φc1
¡
FSST

¢
is bounded as:

WPE
£
φc1
¡
FSST

¢¤
=

= max
h¯̄̄
φc1
¡
FSST

¢− f
∗ ¡ ewT

¢¯̄̄
,
¯̄
φc1
¡
FSST

¢− f∗
¡ ewT

¢¯̄i ≤
≤ max

h¯̄
φc1
¡
FSST

¢− fu
¡ ewT

¢¯̄
,
¯̄̄
φc1
¡
FSST

¢− f
l

¡ ewT
¢¯̄̄i

=

= 1
2

£
f
¡ ewT

¢− f
¡ ewT

¢¤
+ γδT
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If Bδ

¡ ewT
¢ ⊆ C

t ∩ Ct, then:

f
∗ ¡ ewT

¢ ≡ sup
w∈Bδ(wT )

f (w) = f
¡ ewT

¢
+ γδT

f∗
¡ ewT

¢ ≡ inf
w∈Bδ(wT )

f (w) = f
¡ ewT

¢− γδT

WPE
£
φc1
¡
FSST

¢¤
=

1

2

£
f
¡ ewT

¢− f
¡ ewT

¢¤
+ γδT =

=
1

2

h
f
∗ ¡ ewT

¢− f∗
¡ ewT

¢i
Then, from (6), yT+1c = φc1

¡
FSST

¢
is an optimal prediction with prediction error given by 1

2

£
f
¡ ewT

¢− f
¡ ewT

¢¤
+

γδT .

By exploiting more carefully the properties of the HVD V and V , a somewhat stronger result can be

obtained. Let V( ewT ) the set composed of ewT and the vertices of the HVD V contained in Bδ

¡ ewT
¢
and

V( ewT ) the set composed of ewT and the vertices of the HVD V contained in Bδ

¡ ewT
¢
. Let us define the

following functions:

f l
¡ ewT

¢ .
=

 fu
¡ ewT

¢
if wT ∈ C

t

maxw∈V(wT ) f (w) otherwise

f
u

¡ ewT
¢ .
=

 f
l

¡ ewT
¢

if wT ∈ Ct

minw∈V(wT ) f (w) otherwise

Theorem 3

i) The prediction algorithm:

φc2
¡
FSST

¢
=
1

2

h
f
u

¡ ewT
¢
+ f l

¡ ewT
¢i

is almost optimal, with prediction error bounded as:

1
2

h
f l
¡ ewT

¢− f
u

¡ ewT
¢i .
=

.
=WPE

£
φc2
¡
FSST

¢¤ ≤
≤WPE

£
φc2
¡
FSST

¢¤ ≤
≤WPE

£
φc2
¡
FSST

¢¤ .
=

.
= max

h
|φc2
¡
FSST

¢− f
l

¡ ewT
¢ |, |φc2 ¡FSST ¢− fu

¡ ewT
¢ |i

ii) If WPE
£
φc2
¡
FSST

¢¤
= WPE

£
φc2
¡
FSST

¢¤
, then the prediction yT+1c = φc2

¡
FSST

¢
is optimal with

minimal worst case prediction error given by:

WPE
£
φc2
¡
FSST

¢¤
=
1

2

£
f
¡ ewT

¢− f
¡ ewT

¢¤
+ γδT

Proof.

At first we show that:
f
u

¡ ewT
¢ ≥ f∗

¡ ewT
¢

f l
¡ ewT

¢ ≤ f
∗ ¡ ewT

¢ (9)
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where f∗ and f
∗
are given by (5) in the proof of theorem 2.

Suppose that wT ∈ C
t
. From theorem 4 of [1] and from (8) in the proof of Theorem 2, it follows

f
¡
wT
¢
= supw∈Bδ(wt)

³
ht + γ

°°°w − ewt
°°°´. Since (2) implies ht + γ

°°°w − ewt
°°° ≥ f (w) , ∀w ∈ W , then

f
¡
wT
¢
= supw∈Bδ(wT ) f (w). Thus, if w

T ∈ C
t
, we have:

f
∗ ¡ ewT

¢ ≡ sup
w∈Bδ(wT )

f (w) = f
¡
wT
¢
=

= f
¡ ewT

¢
+ γδT ≡ fu

¡ ewT
¢

At the contrary, if wT /∈ C
t
, we have:

f
∗ ¡ ewT

¢ ≡ sup
w∈Bδ(wT )

f (w) ≥

≥ max
w∈V(wT )

f (w) ≡ f l
¡ ewT

¢
Analogously, it can be proven that f

u

¡ ewT
¢ ≥ f∗

¡ ewT
¢
.

From (9) and from the definition of φc2
¡
FSST

¢
it results that:

f∗
¡ ewT

¢ ≤ φc2
¡
FSST

¢ ≤ f
∗ ¡ ewT

¢
Then, the worst-case prediction error of φc2

¡
FSST

¢
is bounded as:

WPE
£
φc2
¡
FSST

¢¤
=

= max
h¯̄̄
φc2
¡
FSST

¢− f
∗ ¡ ewT

¢¯̄̄
,
¯̄
φc2
¡
FSST

¢− f∗
¡ ewT

¢¯̄i ≤
≤ f

∗ ¡ ewT
¢− f∗

¡ ewT
¢ ≡ 2WPE

£
φo
¡
FSST

¢¤
, ∀FSST

where the last equality follows from (6) in the proof of Theorem 2.

Thus the algorithm φc2
¡
FSST

¢
is almost optimal.

From (9) it also follows that:

WPE
£
φc2
¡
FSST

¢¤
=

max
h¯̄̄
φc2
¡
FSST

¢− f
∗ ¡ ewT

¢¯̄̄
,
¯̄
φc2
¡
FSST

¢− f∗
¡ ewT

¢¯̄i ≥
≥ max

h¯̄
φc2
¡
FSST

¢− f l
¡ ewT

¢¯̄
,
¯̄̄
φc2
¡
FSST

¢− f
u

¡ ewT
¢¯̄̄i ≥

≥ 1
2

h
f l
¡ ewT

¢− f
u

¡ ewT
¢i ≡WPE

£
φc2
¡
FSST

¢¤
The lower bound of the prediction error of φc2

¡
FSST

¢
is then derived. Now the upper bound is proved.

From (7) in the proof of Theorem 2 it follows that:

WPE
£
φc2
¡
FSST

¢¤
=

= max
h¯̄̄
φc2
¡
FSST

¢− f
∗ ¡ ewT

¢¯̄̄
,
¯̄
φc2
¡
FSST

¢− f∗
¡ ewT

¢¯̄i ≤
≤ max

h¯̄
φc2
¡
FSST

¢− fu
¡ ewT

¢¯̄
,
¯̄̄
φc2
¡
FSST

¢− f
l

¡ ewT
¢¯̄̄i ≡

≡WPE
£
φc2
¡
FSST

¢¤
Now suppose that

WPE
£
φc2
¡
FSST

¢¤
=WPE

£
φc2
¡
FSST

¢¤

11



This happens only if:

f l
¡ ewT

¢
= f

∗ ¡ ewT
¢
= fu

¡ ewT
¢

f
l

¡ ewT
¢
= f∗

¡ ewT
¢
= f

u

¡ ewT
¢

These equalities imply that:

WPE
£
φc2
¡
FSST

¢¤
=
1

2

h
f
∗ ¡ ewT

¢− f∗
¡ ewT

¢i
Then, from (6) in the proof of Theorem 2, yT+1c = φc2

¡
FSST

¢
is an optimal prediction with prediction

error given by:

WPE
£
φc2
¡
FSST

¢¤
=

1

2

h
f l
¡ ewT

¢− f
u

¡ ewT
¢i
=

=
1

2

£
f
¡ ewT

¢− f
¡ ewT

¢¤
+ γδT

Remark 1

It can be noted that the condition WPE
£
φc1
¡
FSST

¢¤
= WPE

£
φc2
¡
FSST

¢¤
under which the pre-

diction yT+1c = φc2
¡
FSST

¢
is optimal can actually be met. In particular, it is certainly met if Bδ

¡ ewT
¢ ⊆

C
t ∩ Ct.

Remark 2

It can be proved that the worst-case prediction error of φc2 is better or equal than the one of φ
c
2, i.e.

WPE
£
φc2
¡
FSST

¢¤ ≤ WPE
£
φc1
¡
FSST

¢¤
. Moreover, the condition ii) in Theorem 3 for the prediction

φc2
¡
FSST

¢
to be actually optimal can be easily checked. These interesting features are paid at the

expenses of an increase of computational complexity with respect to algorithm φc1, since algorithm φc2

requires the computation of the vertices of the Hyperbolic Voronoi Diagrams V and V .

In summary, the proposed NSM prediction method can be performed through a procedure consisting

of a preliminary off-line phase, in which the parameters ν, γ, ε, δ are chosen, and of an on-line phase,

performed at each time step T , in which the prediction byT+1 is evaluated.
Off-line phase: model calibration

1) Let [1, Toff ] be the time interval on which the off-line computation is performed and let the set of

data recorded in this interval be called identification data set. Partition the identification data set in two

parts. The first part, composed by data from 1 to Te < Toff , called estimation data set, is used in steps

2 and 3. The second part, composed by data from Te + 1 to Toff , called calibration data set, is used in

step 4 for the selection of γ, ε, δ values.

2) Perform a preliminary rough estimate fa (w) of fo (w) by some identification method.

3) Compute by means of theorem 1 the surface γ∗ (ε, δ) defined by (3) on a suitable range of values

of (ε, δ).

4) Select (γ, ε, δ) values in the validated region. A reasonable choice is bγ ∼= maxv∈V kf 0a(w)k, bε ∼=
accuracy of device used for yt measurements and bδ in the validated region, giving the minimum of

RMSE (δ, bγ,bε), where RMSE (δ, γ, ε) is the prediction error of the predictor byt+1 = φc
¡
FSSTe

¢
, t ∈

[Te + 1, Toff ] obtained from theorem 2 or 3.

12



On-line phase: prediction

Suppose that data have been recorded up to time T ≥ Toff . The NSM predictor of yT+1 is:

byT+1 = φc
¡
FSST

¢
where φc

¡
FSST

¢
is obtained from theorem 2 or 3 using the selected values bγ,bε,bδ.

Some issues, regarding extensions and improvements of the proposed prediction method are now

briefly discussed.

• In the on-line prediction, the time needed to evaluate byT+1 = φc
¡
FSST

¢
increases (linearly) with

time T. As a consequence, for large values of T the predictions may be not computable within the

required time. When this situation occurs a simple solution is to use a windowing technique making

use of a constant number of data, excluding the oldest measurements. Note anyway that quite large

amount of data can be actually processed before windowing is required. For example, the online

computing time required for prediction using 10000 data is about 3 ms on a 2.8 GHz computer.

Thus, the online computational burden may be an issue only for problems where the required times

for prediction are very small.

• In the paper and in the above described procedure, given values of regression orders ny, n1, ... , nm
are considered. In practical applications, these values are seldom known and have to be suitably

chosen. Several approaches have been proposed in the literature for this task [20, 18, 30]. In the

examples presented in section 4, we used the simple and widely used approach of performing the

identification for different choices of regression orders, evaluating for each identified model an index

of its predictive ability and choosing the regression orders giving the best index. In the presented

examples, the index is RMSE
³bδ, bγ,bε´.

• Using the same approach described above for one-step ahead prediction, almost optimal algorithms
for k-step ahead prediction can be obtained using a model structure of the form:

yt+k = f
¡
wt
¢

As typically done in statistical prediction methods, a k-step ahead prediction can be obtained

by iterating k times the one-step ahead prediction. However, no optimality properties can be

guaranteed for such a prediction.

• As it happens in other prediction methods, also in the present approach, selecting suitable scalings
of regressors in order to adapt to the properties of data may prove very useful. An "optimal" scaling

is proposed in Lemma 1 of [1].

• So far a global bound kf 0o(w)k ≤ γ over all W is assumed. However, a local approach, able to deal

with a variable bound kf 0o(w)k ≤ γ(w) may be expected to give (possibly significant) improvements

in prediction accuracy. This is similar to what done in identification of piece-wise linear model,

where partitions Wk are looked for, over which fo(w) can be considered approximately linear, i.e.

13



f 0o(w) ' const., ∀w ∈Wk, (see e.g. [31, 32, 33, 34]). However, finding such partitions may be not an

easy task. A very simple alternative approach leading to variable gradient bound assumptions on

fo (see [1]), is based on the evaluation of a function fa approximating fo(using any desired method,

e.g. the SM one proposed in this paper assuming global gradient bounds) and on the application

of the method described in this paper to the residue function, defined as:

f∆ (w)
.
= fo (w)− fa (w)

using the set of values:
∆yt+1 = eyt+1 − fa

¡
wt
¢
, t = 1, 2, ..., T − 1

4 Numerical results

In this section three examples are presented. In the first one, prediction of the well known Wolf Sunspot

Numbers series is considered. The prediction performances obtained by the proposed method for this

real world series, widely used in the literature as a benchmark test, are compared with those provided

by neural network predictors and by other linear and nonlinear predictors taken from the literature.

In the second example, a predictor for the vertical acceleration of a quarter-car system with controlled

suspensions is estimated. The predictor is tested in prediction over a time horizon required for model

predictive control design. In the third example, prediction of time series generated by a linear AR system

of order 2 driven by gaussian noise is considered. This example is aimed to evaluate the degree of

conservativeness of the prediction performances of the NSM method, compared with those provided by

optimal statistical predictors, which in this simulated example can be actually derived, since the models

used for the statistical predictors have exactly the same structure of the data generation mechanism.

Example 1: Wolf Sunspot Numbers

The Wolf Sunspot Numbers time series shown in figure 3 is considered. This set of data, limited to

year 1892, has been chosen because widely used as a benchmark in the time series literature [11, 12, 35].

The time series, consisting of 123 data, has been divided into an identification set, formed by the first

100 data and a forecasting set, composed by the remaining 23 data. The identification set has been used

to estimate the predictors of the various methods. The forecasting set has been used to evaluate the

prediction performances.

Nonlinear Set Membership Global predictor NSMG1_1

The one-step ahead predictor NSMG1_1 has been obtained assuming a model structure of the form:

yt+1 = f (wt)

wt = [yt yt−1 yt−2 ut]

with ut = 0, ε = 0. It can be noted that better results could be obtained by using a higher number

of regressors. We have made this choice to make a fair comparison with the methods presented below,

which use a regressor order up to 4.

A global bound kf 0o(w)k ≤ γ on the norm of f 0o and an absolute noise bound δ have been considered.

Then, the procedure described at the end of section 3 has been applied. The validation curve is shown

14
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Figure 3: Example 1: Wolf sunspot numbers time series. 1770-1869 (bold line): estimation set. 1870-1892 (dshed

line): forecasting set.

in figure 4. The values bδ = 5, bγ = 5.5, have been chosen. It can be noted that the choice of these

values is not very critical. This can be seen in figure 4 where the Root Mean Square Errors (RMSE)

of the one-step ahead predictions on the forecasting set corresponding to different values of δ and γ are

reported. The NSMG1_1 predictor is:

byT+1 = f1G1
¡ ewT

¢
= φc1

¡
FSST

¢
where φc1

¡
FSST

¢
is computed from theorem 2, using the above values of γ and δ.
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Figure 4: Example 1: validation curve for predictors NSMG1_1 and NSMG2_1.

Nonlinear Set Membership Global predictor NSMG2_1
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The NSMG2_1 predictor is:

byT+1 = f1G2
¡ ewT

¢
= φc2

¡
FSST

¢
where φc2

¡
FSST

¢
is computed from theorem 3, using the same assumptions as for predictor NSMG1_1.

Nonlinear Set Membership Local predictor NSML_1

The one-step ahead local predictor NSML_1 has been obtained assuming a model structure of the

form:
yt+1 = f (wt)

wt = [yt yt−1 ut]

with ut = 0, ε = 0. The local approach described in [1] and at the end of section 3 has been used with

fa (w
t) = f1G1 (w

t). The procedure described at the end of section 3 has been applied to the residue time

series eyt+1− fa ( ewt) , t = 1, 2, ..., T − 1 assuming a global bound on the norm of f 0∆ and an absolute noise

bound δ. The regressors have been scaled as indicated in Lemma 1 of [1]. The values bδr = 1, bγr = 0.2
have been chosen as indicated in step 4.

The NSML_1 predictor is: byT+1 = f1G1
¡ ewT

¢
+ φc1

¡
FSST

¢
where φc1

¡
FSST

¢
is evaluated from theorem 2 by using the chosen values of δr and γr.

Nonlinear Set Membership Global predictor NSMG_11

The direct 11-step ahead Nonlinear Set Membership predictor NSMG_11 has been obtained assuming

a model structure of the form:
yt+11 = f (wt)

wt = [yt yt−2 yt−4 ... yt−12 ut]

with ut = 0, ε = 0. A global bound kf 0o(w)k ≤ γ on the norm of f 0o and an absolute noise bound δ

have been considered. The procedure described at the end of section 3 has been applied, based on the

evaluation of the validation curve γ∗ (δ) shown in figure 5. The chosen values are bδ = 5, bγ = 7. The

NSMG_11 predictor is given by:

byT+11 = f11G
¡ ewT

¢
= φc1

¡
FSST

¢
where φc1

¡
FSST

¢
is computed from theorem 2, using the above values of γ and δ.

Nonlinear Set Membership Local predictor NSML_11

The one-step ahead local predictor NSML_11 has been obtained assuming a model structure of the

form:
yt+1 = f (wt)

wt = [yt yt−2 yt−4 ... yt−12 ut]

with ut = 0, ε = 0.

The local approach described in [1] and at the end of section 3 has been used with fa (wt) = f11G1 (w
t).

The procedure described at the end of section 3 has been applied to the residue time series eyt+11−fa ( ewt) ,

t = 1, 2, ..., T − 11 assuming a global bound on the norm of f 0∆ and an absolute noise bound δ. The
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Figure 5: Example 1: validation curve for predictor NSMG_11.

regressors have been scaled as indicated in Lemma 1 of [1]. The chosen values are bδr = 1, bγr = 1. The
NSML_11 predictor is: byT+11 = f11G1

¡ ewT
¢
+ φc1

¡
FSST

¢
where φc1

¡
FSST

¢
is evaluated from theorem 2, using the chosen values of δr and γr.

Neural Network predictor NN_1

The Neural Network predictor NN_1 has been obtained by considering a model of the form:

yt+1 = ψ (wt)

wt = [yt yt−1 yt−2]
(10)

where the function ψ is a one hidden layer perceptron (see e.g. [36, 37]) composed by r neurons:

ψ (w) =
rX

i=1

αiσ (βiw − λi) + ζ (11)

Here αi, λi, ζ ∈ <, βi ∈ <n, are parameters and σ (x) = 2/(1 + e−2x)− 1 is a sigmoidal function.
Several neural networks of the form (11) with different number of neurons (from r = 3 to r = 20)

have been trained on the identification set. A neural network composed by r = 8 neurons, showing good

performances in one-step ahead prediction, has been chosen for the predictor (10).

Neural Networks predictor NN_11

A Neural Network predictor NN_11, tuned for 11-step ahead prediction has been obtained by con-

sidering a model of the form:

yt+1 = ψ (wt)

wt = [yt yt−1 ... yt−ny+1]
(12)

where the function ψ is a neural network of the form (11). The 11-step ahead prediction is obtained by

iterating the equation (12).
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Several neural networks of the form (12) with different number of neurons (from r = 3 to r = 20)

and different order of regression (from ny = 2 to ny = 14) have been trained on the identification set. A

neural network with r = 8 neurons and with ny = 6 regressors, showing good performances in multi-step

ahead prediction, has been chosen for the predictor (12).

Several neural networks were also trained in order to obtain a direct 11-step ahead predictors of the

form yt+11 = ψ (wt) but no satisfying results were obtained. This fact is probably due to the problem of

local minima of neural networks risk function. Indeed such problem is usually relevant in case of strong

nonlinearities and of large noise.

AR predictor [11]

This predictor is based on an autoregressive linear model of order 2.

Bilinear Predictor BL [35]

The BL predictor is based on a bilinear model.

SETAR predictor [38]

The SETAR predictor is based on a threshold autoregressive model.

Optimal Error Predictor OEP [21, 39]

The OEP predictor is obtained by a linear Set Membership approach.

Group Method of Data Handling predictor GMDH [40, 39]

GMDH is a nonlinear predictor, based on polynomial approximation. The original idea has been

proposed in [40], and has been developed by several other authors. Here we show the results obtained in

[39].

In table 2 the performance of the considered predictors on the forecasting set are reported. RMSEk

and MAXEk with k = 1, 11 indicate the Root Mean Square Error and the Maximum Error in Absolute

Value in the k-step ahead prediction.

Predictor RMSE1 MAXE1 RMSE11 MAXE11

NSMG1_1 14.6 28 27.9 54

NSMG2_1 12.9 25 na na

NSML_1 13.8 27 26.6 65

NSMG_11 na na 19.9 45

NSML_11 na na 17.7 45

NN_1 14.2 34 36.0 84

NN_11 na na 23.4 63

AR 18.0 47 32.6 81

BL 16.6 46 32.6 81

SETAR 16.1 44 35.0 76

OEP 14.8 38 21.4 47

GMDH 14.7 42 29.4 81

Table 1. Example 1: one-step and 11-step ahead prediction errors
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From these results, it can be noted that significant improvements are obtained by NSM predictors

over the other methods, especially for 11-step ahead prediction.

It can be also noted that the performances of predictor NSMG2_1, making use of algorithm φc2

(theorem 3) are not significantly better than the ones of predictor NSMG1_1, making use of φc1 (theorem

2), suggesting that it may be not worth to use φc2 instead of the computationally simpler φ
c
1. Thus, in

the next examples, only algorithm φc1 will be used.

Example 2: Quarter-car acceleration prediction

This example is related to prediction of vehicles vertical dynamics, an important tool in the automotive

field, in view of the increasing diffusion of controlled suspension systems. Indeed, accurate prediction

models may allow efficient control systems design through Model Predictive Control (MPC) methods.

Simulated data obtained by the quarter-car model with controlled semi-active suspensions shown in

Figure 6 have been considered in this example. NSM identification of half-car model using experimental

data is reported in [41] and [42].

Figure 6: Example 2: The quarter-car model.

The quarter-car model, called for short “true system”, has been implemented in Simulink in order to

obtain data simulating a possible experimental setup, characterized by type of exciting input, experiment

length, variables to be measured and accuracy of sensors. The vehicle is assumed to travel in a constant

speed V = 60 Km/h. The main variables describing the model are: road profile pr, suspension control

current is, chassis vertical acceleration ac. It is considered that the road profile pr(t) is known, that

current is(t) can be measured with a precision of 3.75% and that the variable ac(t) can be measured with

a precision of 5%.

The chassis, is simulated as rigid body. The following static nonlinear characteristic has been assumed

for the tire:

F1 (t) = F1E (∆p1 (t)) + β1∆v1 (t)
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where F1 is the tire force, ∆p1 and ∆v1 are the differences of position and velocity at the extremes of

tire, β1 = 10000 Ns/m and F1E (∆p1) is shown in Figure 7b. The following nonlinear characteristic has

been assumed for the controlled suspension:

F2 (t) = K2∆p2 (t) + F2D (∆v2 (t) , i (t))

where F2 is the suspension force, ∆p2 and ∆v2 are the differences of position and velocity at the extremes

of suspension, i is the control current, K2 = 17200 N/m, F2D (∆v2, i) is shown in Figure 7a for the two

extreme values i = 0 A and i = 1.6 A.

Figure 7: Example 2. a) Force-velocity chracteristic F2D of suspension. b) Force-displacement characteristic

F1E of tires.

A data set has been generated from “true system” simulation, for a period of 24 seconds, using a

random profile with amplitude ≤ 4 cm. The data set consists of the values of pr, is and ac recorded

with a sampling time of τ = 1/512 sec. The sequence of each measured variables is composed of 12280

samples. The values of ac have been corrupted by uniformly distributed noises of relative amplitude 5%

and the values of is have been corrupted by uniformly distributed noises of relative amplitude 5%. The

data set related to the first 20 seconds, called identification data set, has been used for off-line procedure.

The data set related to the last 4 seconds, called validation data set, has been used to test the prediction

accuracy of identified models. The experimental setup simulated here has been chosen because not too

complex to be realized in actual experiment on real car, [42].

Two predictor, relating front chassis accelerations to the road profile at the sampling times, have been

obtained from the identification data set considering a model of the form:

yt+1 = f (wt)

wt = [yt ... yt−3 ut1 u
t−1
1 ut2 ]

with yt = ac(tτ), ut1 = pr (tτ) and ut2 = is(tτ). The regressors orders ny = 4, n1 = 2, n2 = 1 have been

chosen as described at the end of section 3.

Nonlinear Set Membership Local predictor NSML

The predictor, called NSML, has been derived by means of the local approach mentioned at the end

of section 3 with fa (w) = θTw, where θ is the coefficients vector of an ARX model estimated by means
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of the least squares method. The procedure described in section 3 has been applied to the residue data

∆yt+1 = eyt+1 − θT ewt, t = 1, 2, ..., 12280. The 7680 data corresponding to the first 15 seconds of the

identification set have been taken as estimation set, the 1536 data corresponding to the last 5 seconds

have been taken as calibration set.

The regressors have been scaled, according to Lemma 1 in [1]. A bound kf 0∆(w)k ≤ γr on the gradient

of residue function f∆ (w) = fo (w)− fa (w) and a relative noise bound |dt| ≤ εr|∆yt+1|+ γrδr kwtk, ∀t,
have been assumed. The values bεr = 0.2, bδr = 1.2 and bγr = 0.67 have been chosen, according to the

procedure described in steps 3 and 4 of the off-line phase and using the residue data ∆yt. The NSML

predictor is based on the model:

yt+1 = fa
¡
wt
¢
+ φc1

¡
FSSt

¢
where φc1 (FSS

t) is evaluated from theorem 2 by using the chosen values of εr, δr and γr.

Neural Network predictor NN

The Neural Network predictor NN has been obtained by considering a one hidden layer perceptron

(see e.g. [36, 37]) of the form (11). Several neural networks of such form with different number of neurons

(from r = 3 to r = 20) have been trained on the identification set. A neural network composed by r = 6

neurons, showing good performances in multi-step ahead prediction, has been chosen.

The NSML and NN predictors have been tested on the validation set, evaluating their predictive

ability over the time horizon that may be required for MPC design, i.e. k = [1, 150]. In Figure 8, a

typical comparison between “true” data and of the ones predicted by the NSML and NN predictors are

reported, showing that NSML model can be reliably used for MPC design.

Example 3: Is the SM approach too conservative?

As argumented in the paper, and confirmed by the previous examples, the fact that the SM approach

makes use of quite weak assumptions may be a key feature for cases where reliable information on the

regression function and on noise is not available. However, it may be guessed that the SM approach could

give very conservative results when reliable information on the parametric structure of the system and

on noise statistics is available.

In order to have some hints on this point, a most adverse situation for SM approach is simulated in

this example: data are generated by a linear AR model driven by i.i.d. gaussian white noise and the NSM

predictors are compared with the optimal statistical predictor, which makes use of the exact assumptions.

A Montecarlo simulation composed by 200 time series of 150 data was generated by the equation:

yt+1 = 14.7 + 1.425yt − 0.731yt−1 + dt

where dt is a gaussian white noise of variance σ2d = 50. Note that this is the AR model derived in [11]

for the prediction of the Wolf Sunspot Numbers. The time series have been divided into an identification

set of 100 data, used for constructing the different predictors, and a forecasting set of 50 data, used for

their prediction accuracy evaluation. For each time series, the following predictors have been derived.

Nonlinear Set Membership Global predictor NSMG_1
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Figure 8: Example 2. Chassis accelerations: “true” (solid line), predicted by NSML model (dotted line), predicted

by NN model (dashed line).

The one-step ahead predictor NSMG_1 has been obtained assuming a model structure of the form:

yt+1 = f (wt)

wt = [yt yt−1 ut]

with ut = 0, ε = 0.

A global bound kf 0o(w)k ≤ γ on the norm of f 0o and an absolute noise bound δ have been considered.

The procedure described at the end of section 3 has been applied and the values bδ = 15, bγ = 2, have been
chosen. The NSMG_1 predictor is:

byT+1 = f1G
¡ ewT

¢
= φc1

¡
FSST

¢
where φc1 (FSS

t) is computed from theorem 2, using the above values of γ and δ.

Nonlinear Set Membership Global predictor NSMG_11

The direct 11-step ahead predictor NSMG_11 has been obtained assuming a model structure of the

form:
yt+11 = f (wt)

wt = [yt yt−1 ut]

with ut = 0, ε = 0.

A global bound kf 0o(w)k ≤ γ on the norm of f 0o and an absolute noise bound δ have been considered.

The procedure described at the end of section 3 has been applied. The chosen values are: bδ = 13, bγ = 2.1.
The NSMG_11 predictor is: byT+11 = f11G

¡ ewT
¢
= φc1

¡
FSST

¢
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where φc1
¡
FSST

¢
is computed from theorem 2, using the above values of δ and γ.

Nonlinear Set Membership Local predictor NSML_1

The one-step ahead local predictor NSML_1 has been obtained assuming a model structure of the

form:
yt+1 = f (wt)

wt = [yt yt−1 ut]

with ut = 0, ε = 0.

The NSML_1 predictor has been derived using the local approach mentioned at the end of section 3

with fa (w
t) = f1G (w

t). The procedure of section 3 has been applied to the residue time series eyt+1 −
fa ( ewt) , t = 1, 2, ..., T − 1 assuming a global bound on the weighted norm of f 0∆ and a absolute noise

bound δ. The regressors have been scaled as indicated in Lemma 1 of [1]. The values bδr = 5, bγr = 0.3
have been chosen. The NSML_1 predictor is:

byT+1 = f1G
¡ ewT

¢
+ φc1

¡
FSST

¢
where φc1

¡
FSST

¢
is evaluated from theorem 2 by using the chosen values of δr and γr.

Nonlinear Set Membership Local predictor NSML_11

The direct 11-step ahead predictor NSML_11 was obtained assuming a model structure of the form:

yt+11 = f (wt)

wt = [yt yt−1 ut]T

with ut = 0, ε = 0.

This predictor has been derived using the local approach mentioned at the end of section 3 with

fa (w
t) = f11G (wt). The procedure described in section 3 has been applied to the residue time serieseyt+11 − fa ( ewt) , t = 1, 2, ..., T − 1 assuming a global bound on the weighted norm of f 0∆. The regressors

have been scaled as indicated in Lemma 1 of [1]. The values bδr = 4, bγr = 0.3 have been chosen. The

NSML_11 predictor is: byT+11 = f11G
¡ ewT

¢
+ φc1

¡
FSST

¢
where φc1

¡
FSST

¢
is evaluated from theorem 2 by using the chosen values of δr and γr.

Linear Autoregressive predictor AR

This predictor is based on a linear AR model the same structure of the system generating the data:

yt+1 = a0 + a1y
t − a2y

t−1 + dt

The parameters a0, a1 and a2 and the variance of dt have been derived on the identification set using the

Matlab Identification Toolbox.

In table 1 the results obtained from the 200 experiments are reported. The root mean square errors

and the maximum prediction errors in absolute value evaluated on the forecasting set and averaged over

the 200 realizations of the time series are indicated with RMSEk and MAXEk for the k-step ahead

prediction, with k = 1, 11.
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Predictor RMSE1 MAXE1 RMSE11 MAXE11

NSMG_1 8.9 23 19.2 46

NSMG_11 - - 19.4 45

NSML_1 8.5 22 19.5 47

NSML_11 - - 18.8 43

AR 7.2 18 17.9 43

Table 1. Example 3: one-step and 11-step prediction error averages.

In this simulation example, the AR predictor gives “optimal” one-step ahead prediction performance,

since the data are actually generated by the linear model structure and statistical noise assumptions

used for model identification. The results of table 1 shows the interesting fact that the NSM predictors,

though not using such strong informations on data generating mechanism, do not exhibit a significant

deterioration in the prediction performances.

5 Conclusions

In the paper, a prediction method for nonlinear time series has been presented, based on a Set Membership

approach, requiring quite weak assumptions on noise and on involved nonlinearities. At difference with

most of methods in the literature, the NSM method does not require to know the functional form of

nonlinearities, thus reducing the effects of modeling errors on the propagation of prediction errors, allowing

to increase the horizon on which reliable predictions can be made. Moreover, the noise is assumed only to

be bounded, in contrast with standard approaches, relying on statistical assumptions such as stationarity,

uncorrelation, etc., whose validity is difficult to be reliably checked in many applications and anyway is

lost in presence of approximate modeling. On the base of these theoretical features, it is expected that

the proposed predictors may have good performances, especially for the multi-step ahead prediction, and

exhibit good robustness versus imprecise knowledge of involved nonlinearities and of noise properties.

These expectations appear to be confirmed by the presented numerical results. Indeed, in the case of

the Wolf Sunspot Numbers series, widely used in the literature as a benchmark test, the NSM predictors

display sensible improvements over linear and nonlinear predictors taken from the literature, in particular

for multistep ahead prediction. On the other hand, the simulated linear example with i.i.d. gaussian

noise shows surprisingly small performance deteriorations of NSM predictors with respect to optimal

statistical ones, which in this case can be derived, since the used models have the same structure of the

data generation mechanism.

Further applications of the NSM prediction method to real data can be found in [43], [41], [44] where

prediction of river flow, half-car acceleration and troposphere pollutants are considered, respectively.

In conclusion, the new approach to nonlinear time series prediction presented in this paper appears

to give quite promising results and is being tested on larger classes of simulated and real problems.
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